

Multiple Biometric Grand Challenge Kick-Off Workshop

18 April 2008

National Institute of Standards and Technology

MBGC Sponsors

Executing Agency

Sponsoring Agencies

Science & Technology Directorate

- Federal Bureau of Investigation www.fbi.gov
- Criminal Justice Information Services
- Operational Technology Division

SEC

The MBGC Team

- NIST
 - P. Jonathon Phillips, Test Director
 - Elaine Newton
- Colorado State University
 - Ross Beveridge & Geoff Givens
- SAIC
 - Todd Scruggs
- Schafer Corporation
 - Cathy Schott
- University of Notre Dame
 - Kevin Bowyer & Patrick Flynn
- University of Texas at Dallas
 - Alice O'Toole

Overview

- Background
- MBGC Overview
 - MBGC Goal
 - MBGC Structure
 - Challenge Problem Descriptions
 - How to get the MBGC Data

られ

Challenge Problems

- What are challenge problems?
 - A series of experiments designed to advance a technology's state-of-the-art
 - Experiments designed
 - Experiments and test data distributed to researchers
 - Researchers complete experiments and submit results
 - Scores are consolidated and reported
 - Introduction of new technology
 - Specific to MBGC

Challenge Problem

- What is provided to participants
 - Data (biometric samples)
 - Ground truth (subject ids)
 - Experiment description
 - Score code
 - Standard results format
- What is requested from participants
 - Submission of results

New Technology Development

- Very high resolution Near Infrared (NIR) portal sequences
- Iris video
- Fusion of multi-modal video
- Unconstrained face recognition
- Realistic mug shot and passport images

What to Expect from the MBGC

- MBGC will determine performance improvement on face and iris recognition
- Results will measure:
 - Improvement obtained from video
 - If more samples of existing mode improve performance
 - Effect of resolution on still face
 - Improvement obtained through fusion of face and iris

Background

- FERET 1993-1997
 - Army Research Lab challenge problem/evaluation
- Face Recognition Vendor Test (FRVT) 2000
 - DARPA, NIST, DoD CTDP and NIJ Evaluation
- FRVT 2002
 - DARPA, NIST and DoD CTDP Evaluation
- HumanID Gait Challenge 2002-2003
 - DARPA Challenge problem
- Face Recognition Grand Challenge 2004-2006
 - NIST directed challenge problem
- FRVT 2006
 - NIST directed evaluation
- Iris Challenge Evaluation (ICE) 2005-2006
 - NIST directed challenge problem and evaluation
- Multiple Biometrics Grand Challenge (MBGC) 2008
 - NIST directed challenge problem

Technology Progress

Improved FR Performance

Single Still
Controlled
Different Days

SIST

Iris Recognition

- ICE 2005 and 2006
 - First challenge problem and independent technology evaluation on multiple algorithms
 - Provided performance baseline
 - Patent expiration allowed broader technology development

S S

What does progress mean?

- FERET, FRGC and FRVT 2006
 - Controlled images:

What about iris recognition?

ICE 2006 images

MBGC type images

What about these images?

MBGC plans to address these types of images:

Multiple Biometric Grand Challenge

MBGC Goal

- The main goal of the Multiple Biometric Grand Challenge (MBGC) is to
 - Address face and iris recognition problems that are more relevant to those found in operational data
 - Low to medium resolution face
 - Still and video iris
 - Near Infrared (NIR) & High Definition (HD) video from portals
 - Unconstrained face recognition from still & video

MBGC Goal

- Programmatic Method
 - Sequence of challenge problems
 - Modeled after the FRGC and ICE 2005
 - Challenge problems and data distributed to researchers
 - Workshops
 - Planned independent technology evaluation

Timeline

Estimated Task Schedule for MBGC:

Estimated Schedule	Task
December 2007	Formal annoucement of MBGC project Begin data collection at University of Notre Dame Design protocols, challenge problems and prepare test infrastructure
April/May 2008	1st MBGC Workshop Release 1st challenge problem
October 2008	2nd MBGC Workshop Self-reported results on Challenge Problem 1 presented Release 2nd Challenge Problem
Spring 2009	3rd MBGC Workshop Self-reported results on Challenge Problem 2 presented
Spring/Summer 2009	Planned Multi-Biometric Evaluation (MBE) 2009 (Option)

SIZ

MBGC Challenge Problems

Worked with sponsors over a 12-month period to define

problems

Video Face

Still Face

ICAO-ISO

Standard

Portal Challenge Problem

Portal Video

Mugshot

ICAO-ISO Standard

Motivations

Rapid acquisition of biometrics at points of entry

Non-invasive capture

Portal Goals

- Algorithm development
 - Biometrics: face and iris
 - Modes: iris video, NIR video, HD video

Meet the Sensors....

Meet the LG 2200

MBGC Iris Acquisition System

- Take 3 iris images
- One above quality threshold
- Save all three

Meet the Portal

b S Z

Meet the Portal

High
Definition
(HD) Video
Camera

b S Z

Meet the Portal

High Definition (HD) Video Camera

Near Infrared (NIR) Video | Cameras

Meet the Portal

Experiment Terminology

31

- Target
 - Enrolled image
- Query
 - Image to be recognized

Experiment:Still Iris versus NIR

Experiment:Still Iris versus NIR

Ground truth provided: Subject ID

Note: Input will be full video sequence

Similarity Score

- Algorithm will need to:
 - Process Video
 - Locate Irises
 - Segment Irises
 - Generate Template or other Representation 33

Meet the LG 2200 again....

Iris Video Sequence

Experiment: Video Iris versus NIR

Experiment:Video Iris versus NIR

Both inputs will be full video sequences

- Algorithms will need to:
 - Process Video
 - Locate Irises
 - Segment Irises
 - Generate Templates or other Representation

Meet the Portal again....

Experiment:Still Face versus HD Video Face

Experiment:Multiple Biometrics

Experiment:Multiple Biometrics

Input is iris video sequence and face still

Input is both video sequences

- Algorithms will need to:
 - Process all video sequences
 - Generate templates or other representation
 - Decide fusion strategy

Quick Summary

Still Iris versus NIR

Video Iris versus NIR

Still Face versus **HD Video Face**

Multiple Biometrics

Target

Considerations you may not have thought of.....

Experiment: Cross-Mode Face

Similarity Score

Experiment: Multi-Mode Face

Similarity Score

Experiment: Multi-Mode Face

Portal Summary

- Introduce new technology
- Seven experiments
- Multiple biometrics

MBGC

Still Face Challenge Problem

Still Face

Mugshot

ICAO-ISO Standard

••••

Standard

Frontal Face

- FERET, FRGC and FRVT 2006
 - Controlled images:

Frontal Still Face

- Unconstrained Illumination:
 - High resolution camera
 - 4 and 6 megapixels

- Face size 90-120 pixels between the eyes compressed to 8k and 20k
 - ISO/IEC Standard

5

Still Face

- Two target sets AY03-04 (FRGC)
 - Controlled Illumination Frontal
 - 16,028 images
 - Uncontrolled Illumination Frontal
 - 8,014 images

- Uncontrolled Illumination Frontal
 - 13,785 images
 - Outdoors
 - Hallways and Atriums

Experiment:Still Face versus Still Face

Target Set

Query Set

Target Set

Query Set

Effects of Lower Resolution and Compression on FR

- Determine effect of
 - Lower resolution
 - Compression
- Process original images to meet data requirements
 - Scale and crop
 - 120 and 90 pixels between the eyes
 - Compress images
 - 20k and 8k

Still Face Processing

Experiment:Still Face Compression 1

Compressed: 120 pixels between eyes, 20k

Target Set

Query Set

Target Set

Query Set

Target

Experiment: Still Face Compression 2

Compressed: 90 pixels between eyes, 8k

Target Set

Query Set

Target Set

Query Set

Still Face Summary

Varying illumination

Original

Measure effects of compression and resolution

- Three experiments
 - High resolution
 - Two scaled and compressed

8k

andard

Video Face Challenge Problem

Video Face

与区

Goal and Motivition

- Unconstrained face recognition
 - Still versus video
 - Video versus video

Experiment: Video versus Video

Experiment:Still versus Video

Video Summary

Video to video

Addressing unconstrained face recognition

Quality

S

Motivations

- Ensure control over enrollment processes
 - Do you get images that give you good matches?
- Confidence level in matching for degraded images
 - Reliability in producing a good match
 - What consitutes a good quality measure?

Compute Image Quality Still Images

Input Face Image

- Optional submission
- Quality score per biometric sample

Compute Image Quality Video

Performer's Image Quality Module

Quality Measure

Input Iris video

Performer's Image Quality Module

Quality Measure

Input HD Video

Performer's Image Quality Module

Quality Measure

Compute Image Quality Multi-Modal

Input

Performer's Image Quality Module

Quality
Measure

Input

Performer's Image Quality Module

Quality Measure

Quality Summary

- Optional part of MBGC
- Assessment of quality measures
- Impact on fusion

MBGC Mechanics

Timeline

Estimated Task Schedule for MBGC:

Estimated Schedule	Task
December 2007	Formal annoucement of MBGC project Begin data collection at University of Notre Dame Design protocols, challenge problems and prepare test infrastructure
April/May 2008	1st MBGC Workshop Release 1st challenge problem
October 2008	2nd MBGC Workshop Self-reported results on Challenge Problem 1 presented Release 2nd Challenge Problem
Spring 2009	3rd MBGC Workshop Self-reported results on Challenge Problem 2 presented
Spring/Summer 2009	Planned Multi-Biometric Evaluation (MBE) 2009 (Option)

S S

What is provided by us....

- Challenge problem data
- Subject IDs
- XML sigset description
- Common results format
- Classes to read/write formats
- Scoring code
- Bash script for running experiments
 - Same arguments as FRVT 2006 & ICE 2006

5

General Rules for Submitting

- Submit
 - Matching results (Similarity matrix)
 - Quality scores [optional]
- Can submit subset of experiments
- NIST reserves right to attribute performance

Challenge Problems and Data Distribution

- Challenge problems and the first MBGC data set will be released sequentially starting
 1 May 2008
- To obtain data, you will need to submit data licenses signed by proper legal authorities
- Instructions for requests will be posted on MBGC website at http://face.nist.gov/mbgc

Estimated Size of Challenge Problems

Portal

- 600 video sequences
- 1400 stills
- 100 Gigabytes

Still face

- 150,000 stills
- 75 Gigabytes

Video face

- 1500 video sequences
- 1500 stills
- 150 Gigabytes

Challenge Problems and Data Distribution

- What is the method of distribution?
 - Downloadable via rsync
 - Instructions for downloading data will be distributed after
 - Data licenses have been properly signed and submitted and your request has been processed

Summary

- Multiple Biometric Grand Challenge (MBGC)
- Three challenge problems
- Multiple biometrics for portals
- Towards unconstrained face recognition

